A Predictive Differentially-Private Mechanism for Mobility Traces

Marco Stronati
marco@stronati.org
joint work with
K. Chatzikokolakis and C. Palamidessi

Location Based Service

pe0059623 [RF] © www.visualphotos.com

Scope

$$x \longrightarrow \mathcal{M} \longrightarrow z$$

Scope

$$x \longrightarrow \mathcal{M} \longrightarrow z$$

Privacy

through reduced accuracy

Utility

accuracy of reported location

Scope

$$x \longrightarrow \mathcal{M} \longrightarrow z$$

Privacy

through reduced accuracy

Utility

accuracy of reported location

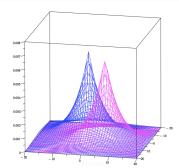
Contribution

in traces with considerable correlation we provide better utility

Privacy Definition

Geo-indistinguishability

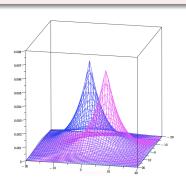
$$d_{\mathcal{P}}(M(x), M(x')) \le \epsilon \cdot d(x, x') \qquad \forall x, x'$$

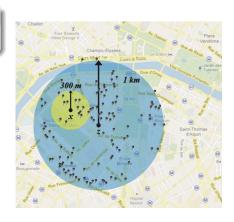


Andrés, Bordenabe, Chatzikokolakis, Palamidessi: Geo-indistinguishability: differential privacy for location-based systems. In: Proc. of CCS, ACM (2013) 901-914

Privacy Mechanism

Noise mechanism


 $N(\epsilon_N)$



Privacy Mechanism

Noise mechanism

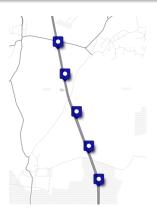
 $N(\epsilon_N)$


Mobility Traces

Independent Mechanism

 $IM(\bar{x})$ that uses $N(\epsilon_N)(x)$ is

 $n \cdot \epsilon_N d$ -private


- works on *any* trace (including random teleporting)
- budget is linear with the length of the trace

Correlation

- real traces are strongly correlated
- not every point has the same value

Predictive Mechanism (broken)

Equip the noise mechanism with

- a prediction function
- \bullet a test function with a threshold l

- easy points are free
- hard points cost ϵ_N

Predictive Mechanism (broken)

Equip the noise mechanism with

- a prediction function
- ullet a test function with a threshold l

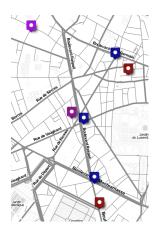
- easy points are free
- hard points cost ϵ_N

Predictive Mechanism (broken)

Equip the noise mechanism with

- a prediction function
- ullet a test function with a threshold l

- easy points are free
- hard points cost ϵ_N



Predictive Mechanism (broken)

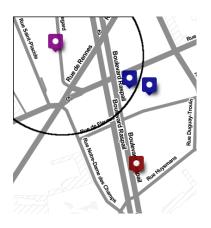
Equip the noise mechanism with

- a prediction function
- ullet a test function with a threshold l

- easy points are free
- hard points cost ϵ_N

Deterministic test

breaks d-privacy: two close secrets always report different observables


Deterministic test

breaks d-privacy: two close secrets always report different observables

Deterministic test

breaks d-privacy: two close secrets always report different observables

Deterministic test

breaks d-privacy: two close secrets always report different observables

D-Private test

 $\Theta(\epsilon_{\theta}, l)$

adds again laplacian noise on the distance between secret and prediction

Deterministic test

breaks d-privacy: two close secrets always report different observables

D-Private test

 $\Theta(\epsilon_{\theta}, l)$

adds again laplacian noise on the distance between secret and prediction

Skip the test

testing is still linear in n

Predictive Mechanism

Predictive Mechanism

 $PM(\epsilon_{\theta}, \epsilon_{N}, l)$

- prediction function
- d-private test $\Theta(\epsilon_{\theta}, l)$
- noise mechanism $N(\epsilon_N)$

Results

- the mechanism is indeed d-private
- the budget used at each step is ϵ_{θ} (easy) or $\epsilon_{\theta} + \epsilon_{N}$ (hard)
- global budget depends on the run (on the trace)

Budget Managers

Parameters

- Local: $(\epsilon_{\theta}, \epsilon_{N}, l)$
- Global: (ϵ, α, n)
- \bullet Budget Manager: Global \to Local

Budget Managers

Parameters

- Local: $(\epsilon_{\theta}, \epsilon_{N}, l)$
- Global: (ϵ, α, n)
- ullet Budget Manager: Global ightarrow Local

Privacy

fixed ϵ we define two strategies

Fixed Accuracy

What is saved is spent to increase n

Fixed Rate

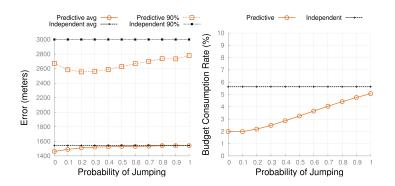
What is saved is spent to decrease α

Parrot prediction - simple yet effective

Parrot prediction - simple yet effective

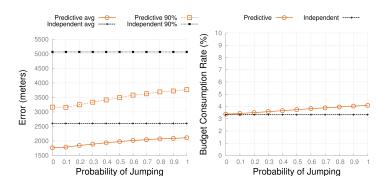
repeats the last observable

Geolife and TDrive from Microsoft


Sampling

Sampled the traces with different frequencies

- 1 minutes
- 1 hour (a jump)
- Original trace
- Sampled trace
- Reported trace

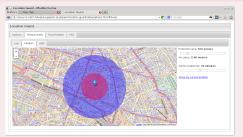


Experimental results

Geolife: Fixed Accuracy 3 km $with \ skip$

Experimental results

Geolife: Fixed Rate 3.3%


What to take home

- composition of private and deterministic components
- budget managers allows to move cost from privacy to accuracy or rate
- 99% predictive mechanism is reusable
- considerable correlation is needed to make up for the test cost

Thanks

${\bf Questions?}$

Location Guard for Chrome and Firefox

https://github.com/chatziko/location-guard