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Privacy for LBS

@ Goal: limit semantic inference
@ (not anonymity)
@ Reasonable utility for LBS
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Obfuscation

Mechanism

x — M — z

[Chatzikokolakis et. al: Broadening the Scope of Differential Privacy Using Metrics. PETS’13]
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Obfuscation

Mechanism
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d-privacy

dp(M(x), M(x')) < dr(x,x") Vx,x'

y

o Distinguishability Metric on your set
of secrets

@ Apply noise according to the metric

[Chatzikokolakis et. al: Broadening the Scope of Differential Privacy Using Metrics. PETS 13]



Geo Indistinguishability

dy(x,x') = € dg(x,x') )

@ Space is privacy

@ ¢ tunes how much

Requirement ‘ :

I want to be indistinguishable from a
certain amount of space.

14, © OpenSiestip cont
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[Andrés et al: Geo-indistinguishability: differential privacy for location-based systems. CCS’13]
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Not adaptable
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Privacy Mass from OpenStreetMap
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Privacy Mass from OpenStreetMap
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Privacy Requirement

I want to be indistinguishable from a certain amount of privacy mass.

Privacy Mass

Indistinguishability Level .

req(l) = mass



Building an Elastic Metric

Graph-based algo:
o start with a disconnetted graph
@ interate over all nodes

> compute mass
» add an edge with [ = req™ ' (mass)

e westopatl'

dx(x,x') = shortest-path(x,x’) J
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Elastic Mechanism

Elastic Mechanism = Elastic Metric + Exponential Mechanism
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Elastic Mechanism
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Elastic Mechanism
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Elastic Mechanism
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Evaluation

o EM vs PL

o City (Paris) vs Subsurb (Nanterre)

o Fixed Utility as Expected Error

@ Compare Privacy as Adversarial Error
@ Gowalla and Brightkite datasets

[Shokri, Theodorakopoulos, Boudec, Hubaux. Quantifying location privacy. S&P’11]
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Expected Error (m)
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Conclusion & Future

@ Geoind is simple and efficient (Location Guard)

@ Too rigid!

Contributions:
o Elastic metric with privacy mass requirement

@ Scalable algorithm

Future Work:
@ Include in privacy mass ideas from k-anonymity

o Lightweight version for Location Guard



Thanks

@ Don’t miss Location Guard tomorrow @



Fences

@ linear growth of epsilon

e fences for recurrent places
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